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Abstract-The heat transfers during the melting of the crystallized droplets inside an emulsion are inves- 
tigated. Contrary to the crystallization case (see Part l), in the case of pure substances, the melting of the 
crystallized droplets occurs, upon heating, at a fixed temperature j”, which corresponds to the phase 
equilibrium and the kinetics of melting depends on the heat transfer between the droplet and the emulsifying 
medium. So, the model, for melting, is quite different from the model for crystallization. As for cooling, 
the space-time evolution of the temperature inside a metallic cylinder filled with the emulsion is investigated. 
The dispersed substances are hexadecane, octadecane and water. The effect of different parameters such 
as the heating rate, the mass fraction or the final temperature is analyzed. A comparison will be made with 

experimental results. 

1. INTRODUCTION possible, for hexadecane, to obtain a microemulsion 

IN PART I, we have presented experimental results 
[3], we will denominate the dispersed systems as emul- 

and a model [l, 21 for the heat transfers due to the 
sions 

’ 
crystallizations of the undercooled droplets dispersed 

We have already presented the experimental cell in 

within an emulsion. The transformations occurred in 
Part I [l] which consists of a metallic cylinder with a 

a temperature range below the melting temperature 
inner radius radius R,, = 30 mm and a height of 130 

r, because of the undercooling phenomenon. The 
mm steadily heated by a bath. 

erratic character of the crystallizations was evidenced 
and we considered that the release of heat was instan- 
taneous and proportional to the number of droplets 
which crystallize per unit time, this number being 
proportional to the probability of the phase trans- 
formations. 

In this paper, we present a model for the deter- 
mination of the heat transfers and the kinetics of the 
transformations, upon heating, during the melting of 
the crystallized droplets of the emulsion. This model 
is quite different from the model for cooling because, 
at the crystallization the release of energy, for a drop- 
let, is practically instantaneous because it occurs far 
from the thermodynamic equilibrium but, at the melt- 
ing, the absorption of energy is at the fixed melting 
temperature and its kinetics depends on the exchange 
with the surrounding medium. 

2. EXPERIMENTAL 

Hexadecane (TF = 18.0°C) and octadecane 
(r, = 27S”C) are dispersed by a high speed stirrer 
within an emulsifying medium made of a mixture of 
water, glycerol and Tween 80@ as surfactant. Water 
is dispersed within a mixture of paraffin oil and natu- 
ral lanolin. Although, with a particular choice of the 
concentration of the emulsifying medium, it is 

3. ANALYSIS 

As for the cooling, we present the model in the case 
of an emulsion in a cylinder with a height much larger 
than its diameter. So, only the radius of the cylinder 
r and the time t are the variables taken into account. 

For the same reasons mentioned in Part I (smallness 
of the droplets, high viscosity and variation of the 
density negligible), no movement of the emulsion as 
a whole is possible ; so, only the conduction is taken 
into account. 

Hence, we use the energy equation : 

aT(r, t) 
pc at 

__ = V(kVT(r, t)) +cj (1) 

where k is the thermal conductivity of the emulsion, 
p its density and c its specific heat. The heat source 4 
is different from zero when the melting occurs. 

As for the cooling, we should consider the tem- 
peratures of the emulsifying medium and of the droplet 
as the same. It is the measured temperature. But theo- 
retically, there exists a small temperature difference 
between the inside and the outside of the droplets 
depending on the thermal resistance of the droplet- 
emulsifying medium interface. In fact, this difference 
is very small (a few hundredths of a degree). We will 
neglect this difference except when the temperature 
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NOMENCLATURE 

a diffusivity of the emulsion [m’ s ‘1 r dimensionless time 

BP Biot number of the cell T(r, t) temperature at r and t [“Cl 

Bi Biot number of the droplet TF melting temperature [‘Cl 

c specific heat of the emulsion [J K ’ kg- ‘1 T,,, final temperature after the steady heating 

cL or cs specific heat when the droplets of [’ Cl 
the emulsion are liquid or solid T,,(t) programmed temperature of the bath 

[J Km’ kgg’] [ ‘Cl 
h exchange coefficient between the droplet T0 initial temperature [‘Cl 

and the emulsifying medium [W m-‘1 T:, temperature of the node m at time i [“Cl 

h SL specific latent heat of fusion ( > 0) V mean volume of a droplet [m’] 

[JW’I X(r, t) local melted fraction of droplet 
h”“’ external exchange coefficient for the cell X:, local melted fraction of droplet for the 

[Wm -2s-‘l node m at time i. 

k heat conductivity of the emulsion 
[Wm-’ K-.‘] 

&I heat conductivity of the dispersed Greek symbols 
substance [W m-’ K-‘1 heating rate ( > 0) [“C h- ‘1 

k, or k, heat conductivity when the droplets ;! dimensionless cooling rate 
of the emulsion are liquid or solid ‘i ratio of the heat conductivities of the 

[Wm ’ Km’] emulsion and of the dispersed substance 
M number of intervals in the grid I- scale factor 

nt total number of droplets per unit volume n dimensionless temperature 

p [mm’1 O,,, final dimensionless temperature 
mass fraction of the dispersed substance B, (F) dimensionless temperature of the bath 

4 heat source [Jmm3sm’] P ratio between the mass densities of the 
r radius [m] emulsion and of the dispersed substance 
r dimensionless radius P mass density of the emulsion [kg mm’] 

& inner radius of the cylinder [m] PO mass density of the dispersed phase 
s mean area of a droplet [m ‘1 [kgm-‘1 
Srr Stefan number of the emulsion ’ duration of the plateau for the axis [h] 
t time [h] ; gradient or divergence operator. 

inside the droplet is exactly T, when the droplet is 
melting because this difference commands the kinetics 
of the fusion. So, at the melting, we consider that the 

temperature of the melting droplet is TF whereas the 
temperature of the emulsifying medium T(r, t) varies. 

At the melting there is no delay for the trans- 
formation and as soon as the temperature of the drop- 
let is TF, the droplet acts as a heat source (in fact a 
heat sink) during the lapse of time where the melted 
fraction of the droplet X(r, t) is such as 0 < X(r. 
t) < 1. 

The heat source is proportional to the number of 
droplets whose temperature is TF and to the fraction 
of the droplet dX/dt which melts per unit time. The 
melted fraction of the droplet X(r, t) is such as 
0 < X(r, t) < 1 and the heat sink operates only when 
these inequalities are true. 

During the melting the energy balance of one drop- 
let is given by : 

pnVhsLf$= -h(T,-T(r,t))S 

where p. is the density of the liquid of the droplet, V 

its volume, S its external area and h an exchange 

coefficient between the droplet and the surrounding 
emulsifying medium. h is characteristic of the thermal 
resistance due to the absorbed surfactant which sur- 
rounds the droplet and separates the droplet from the 

emulsifying medium. 
If R is the mean radius of the droplets. we have : 

dX 
p= -$&(TF-T(r,f)). 
dt o SL 

(2) 

The energy absorbed per unit time by one droplet is 

-PO Vhs,(Wl(dt). 
P is the mass fraction of the dispersed phase (ratio 

between the mass of the dispersed substance and the 
total mass of the emulsion), the number of droplets 
per unit volume is (pP)/(p,,V). Because all the drop- 
lets reach the temperature TF together and because 
there is no delay for the melting, all the droplets 
(unlike the case of crystallizations [l]) participate in 
the heat source (sink). So : 
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sionless equations defining the dimensionless vari- 
ables : 

When 0 < X(r, t) < 1, the system to be solved is : T- T, 

pc~=V(kVT)+~~(TF-T(r,t)) 

‘-$*, j==f, (j------- (12) 
II 0 TF-To’ 

(3) 
0 Before the melting, when 0(K t) < 0, and after the 

dX complete melting-when X(f: ?) = 1 equation (5) 
-_= 
dt -&(TF-T(r,f)). (4) becomes : 

When T(r, t) < T, (A’= 0) or when the melting is 
complete (X(r, t) = 1) the only conduction equation 
which has to be solved is : 

pc; = V(kVT). (5) 

The resolution of these equations is made by an 
explicit finite differences method. The numerical cal- 
culations begin for t = 0 at a temperature lower than 
TF solving first equation (5) as long as T < TF. 

But as soon as T is equal to T,, the system of 
equations (3) and (4) is solved as long as X is such as 
0 < X(r, t) < 1. As soon as the calculated X(r, t) is 
1, we solve again equation (5). 

In the case of the cylinder heated by a bath whose 
temperature T, is a linear function, we have : 

T,(t) = Bt+ T,, (6) 

ae a% 1 ae 
z=@+Fs. (13) 

As soon as 0(?, r) = 0 and as long as 0 < X(f, r) < 1 
the system of equations (10) and (4) becomes : 

ae 8% 1 ae P dX 
~=~+;~-&~ (14) 

dX 
dr = 3StepBiyr’Q. (15) 

The boundary conditions would be : 

a8 (-> = ai i=o 
0 (16) 

= Bi”‘[e, - 6( 1, r)] (17) 

where To is the temperature at the beginning of the with 
heating (indeed T, < TF) at the rate /I (p > 0). We 
have : em =B’r--1 (18) 

dT (-> = ^I 0 
or rCO 

(7) 
where 

= heX’[T(Ro, t)- T,(t)] (8) 
is the dimensionless heating rate. 

where h’“’ is the exchange coefficient between the emul- We can have full heating or heating limited at a 

sion and the bath [1] and k the heat conductivity of temperature : 

the emulsion. T 
Moreover we can examine either the case of full 

- TF t?,., = = 
heating or heating limited at a temperature T,,,,,. 

TF - To 

For the initial conditions we can choose : The initial conditions are : 

T(r,O) = To. (9) forT=O 0= -1. 

If the values of k and c were constant, equation (3) 
would become : 

The dimensionless parameters are : 

Ste = 
c( TF - To) 

h 
SL 

the Stefan number. 

+ g(T,-T(r,t)) (10) 

and equation (5) would be 

Bi=F 
0 

aT(r, t) 

( 

a2T(r, t) 1 aT(r, t) 

> 

the Biot number of the droplet, 

at=” ----i-+- & r & (11) 
Y = klk, 

where a = k/p is the diffusivity. the ratio of the heat conductivities of the emulsion 
In this case, it would be possible to give dimen- and of the dispersed liquid 
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h’“‘R 
Bj’“’ = -0 

k 

the external Biot number of the cylinder, 

I-ERR’ 

a scale factor, 

the ratio between the mass densities of the emulsion 
and of the dispersed phase. 

In this study of melting we obtain universal equa- 
tions referenced to the melting point. But we have the 
same problem as for the cooling because k and c are 
different when the dispersed phase is either liquid or 
solid. For this reason, and to be coherent with the 
results upon cooling, we have kept the equations with 
their dimension. A good approximation [4] for the 

values of k and c is given by the linear equations : 

and 

k = k,+(k,-k,)X(r.t) (19) 

c = cr. + (cs -c, )X(r, t) (20) 

where k, and cL are the heat conductivity and the 
specific heat of the emulsion when the dispersed phase 
is liquid and k, and cs the corresponding values when 
the dispersed phase is solid. 

So, we have directly solved the system of equations 
(4) and (3) or equation (5) taking for k and c the 

values calculated by equations (19) and (20). 
Although, the mathematical problem posed by this 

model is not classical [S]. it can be simply solved by a 
numerical explicit finite differences method. The 
radius r of the cylinder being the only spatial variable, 
we divide the radius R, into M intervals with a length 
Ar = R,/M, the location of the node m being at 
r = (m- I)Ar. For each interval of time At labelled by 
i, equations (4), (3) or (5) become for 1 < m < M: 

m nr 3hPp X’f’-X’ 

At -,p(L-T,) 
0 

(22) 

where the coefficient g = 0 before the melting when 
T:, < TF (X:, = 0) or after the complete melting when 
p:, > r, and XL = 1 (equation (5)) and where g = 1 
during the melting as soon as Ti, 2 T, and as long as 
0 < X:, < 1 (equation (3)). 

To express the limit conditions we use the following 
equations : for m = 1 (r = 0) we have 

T’+‘_-T 
pc(x;)iA; ---I 4X’,) 

= 4&# (r;-r;) 

+;F(T,-T;)y (23) 
0 

for m = M(r = R,) we have: 

+$&T&g (24) 
” 

where T: = /?iAt+ T, after equation (6). 

4. RESULTS 

In Figs. l-3~we present the experimental curves of 

the temperatures vs time for different values of the 
radius r for water, octadecane and hexadecane. 
respectively. The heating is limited at T,,,,, = 24.O”C, 
T,,,,, = 44.1 C and T,,,,, = 29.8’C because full heating 

would necessitate a very high temperature where the 
emulsions would be destroyed. 

For the axis we define this length of the plateau z’ 

as indicated on Figs. l-3. r’ will be characteristic of 
the melting of the dispersed phase in the cylinder. 

We observe the curves present a quasi plateau 

whose temperature at its end is T,. the melting tem- 
perature. The length of this plateau is all the greater 
as r is nearer 0. 

In Fig. 4(a) we have the corresponding calculated 

curves for hexadecane where all the physical par- 
ameters k,, k,. cL. cs and p have been determined 
[I]. The parameter h’“’ has been determined by the 
experiments on cooling. For h, the exchange 
coefficient between the inside and the outside of the 

Tmor = 24-C 

WATER 

Emulsion 

P=O.30 fl=20’C/h 

FIG. 1. Temperatures of the solders vs time for a water 
emulsion heated at fi = 30°C h-’ (T,,, = 24.O”C). 
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T(‘C 
Tmax - 44.1.C 

OCTADECANE 

Emulsion 

t’=0.50 p =30’C/h 

3 5 w 
7 t(h) 

FIG. 2. Temperatures of the solders vs time for an octadeeane 
emulsion heated at /I = 30°C h-’ (T,,,.,, = 44.1”C). 

droplet, we have chosen the value of 0.1 W mm2 K-’ 
because for lower values the general shape of the 
curves is different (we would not have a plateau) but 
with h = 0.1 W m-2 K-’ or higher values we have a 
similar shape and the value of z’ is practically inde- 

pendent of h [6]. In this case, not only do we find the 
same shape for the curves but also the length of the 

plateau defined in the same way as for the exper- 
imental results is in good accordance. 

For the melting, it seems more logical to have a 
plateau of temperature because the transformations 
of the dispersed phase occurs at a fixed temperature 
TF which corresponds to the thermodynamical equi- 

Tmax = 29.8’C 

HEXADECANE 

Microemulsion 

P = 0.50 p = 30’C/h 

-407 

2 4 6 8 IO tlh) 

FIG. 3. Temperatures of the solders vs time for a hexadecane 
emulsion heated at /J’ = 3O’C h-’ (T,,,,, = 29.8’C). 

TI’C) t T max = 29.8’C 

(a) 

I 6 o t(h) 

FIG. 4. (a) Calculated temperatures T(r, r) at different 
radii from r = 0 to r = R, (step of 2.5 mm), vs time for an 
hexadecane emulsion heated at p = 30°C h-’ up to 
T mar = 29.8”C and (b) the corresponding calculated pro- 

portions of crystallized droplets $(r. I). 

librium if we assume that the droplets are all melting 
during the lapse of time z’. But, in Fig. 4(b) giving 
X(r, t), the fraction of the droplet which is melted, we 
see that, in fact. the melting of the droplets actually 
occurs at the end of the plateau. Analysing the curves 
more accurately, we observe that before the end of the 

plateau, the temperature is close to TF but always 
slightly lower except at the end. As for the cooling, 
we have a narrow front of fusion which moves from 
the cylinder to the axis and not the progressive melting 
of all droplets together. 

As for cooling, changing the different parameters 

we observe the same shape for the curves. So, it is 
sufficient to analyse the variation of 7’. the duration 
of the axis temperature plateau. 

I@uence qf the heating rate /3 
As indicated above, to avoid the destruction of the 

emulsions, it was impossible to heat sufficiently high to 
have full heating. Hence, Fig. 5 gives only calculated 
values of z’ for different values of the heating rate /L 

We observe that z’ decreases when p increases but 

7’ is not a linear function of /I. 

Influence qfthe rnass,fraction P 
As explained for the experiments upon cooling [ 11, 

it has been possible to study only emulsions of hex- 
adecane where P is 0.50 or 0.25. In Table 1, we com- 

Table 1. Values of T’ vs P 

r'(h) P = 0.50 P = 0.25 

Experimental 5.5 3.0 
Model 5.3 2.8 
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T’(h) 
I 

5- 

4- 

3- 

HEXADECANE 

P = 0.50 

Influence of p 

I- 

O I I I w 

5 IO 20 30 P(“C/h) 

FIG. 5. Calculated values of r’ for different heating rates. 

pare the experimental and theoretical results for t’ 5. CONCLUSION 

(Ttnax = 33.0-C). 

The values are in good accordance. 

I@uencr qf the higher temperature T,,,;,, 

In Fig. 6 we see the values of T’ when the tem- 
perature T,,,,, attained by the bath is lowered (indeed 
T,,,,, > T,). We observe that r’ largely increases when 
T max approaches the melting temperature which is 

logical because the heat fluxes are reduced. the tem- 
perature gradients being smaller. 

Above, we have concluded that upon heating we 
have a narrow front moving from the inner side of the 
cylinder where the droplets are melting. It has been 
shown [6] that, even when T,,,,, is low, the front is 
always narrow. Its moving from the inner side of the 
cylinder to the axis is only slowed down. This result 
is different from the result upon cooling [I], showing 
that the phenomenon is quite different. 

I 
T,=IWC \ 

HEXADECANE 

P-O.50 I).30-C/h 

. experimental 

15 20 25 30 Tm(‘C) 
6. 

FIG. 6. Calculated and experimental values of r’ for different 
values of T,,,. the maximum temperature of the bath. 

3. 

4. 

2. 

In this second part, we have presented experimental 
results concerning the study of heat transfers inside 
an emulsion when the crystallized droplets melt. 

The model presented is based on the resolution of 
the energy equation with a heat source (sink) depend- 
ing on the local difference between the temperature of 
the emulsifying medium and the temperature T, of 

the melting droplet. It confirms the shape of the curves 
giving the temperature at different radii of the cylinder 
vs time. We have a quasi plateau with a final tem- 
perature which is the melting temperature r,. The 
experimental and calculated durations of the plateau 
are in good accordance and : 

decreases when the heating rate increases ; 
decreases when the mass fraction decreases ; 
largely increases when the final temperature decreases. 
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